關(guān)于稀土上轉(zhuǎn)換發(fā)光材料的應(yīng)用介紹
- 稀土上轉(zhuǎn)換發(fā)光材料的應(yīng)用
上轉(zhuǎn)換發(fā)光材料由于其短波激發(fā)長波發(fā)射的特性,再加上其壽命長、潛在生物毒性低、可制備成納米顆粒的特點,具有非常豐富的應(yīng)用前景,其在生物成像、熒光示蹤、太陽能電池轉(zhuǎn)換、上轉(zhuǎn)換激光、防偽、3D成像等方面均有報道其應(yīng)用,以下簡單介紹幾個典型應(yīng)用:
- 生物成像
上轉(zhuǎn)換發(fā)光納米材料(UCNPs)具有熒光壽命長、潛在生物毒性低、穿透深度大、對生物組織損傷小且?guī)缀鯖]有背景光等顯著優(yōu)點,近年來在生物成像及生物檢測等領(lǐng)域已經(jīng)得到廣泛應(yīng)用,下圖未上轉(zhuǎn)換納米顆粒在生物活體中進(jìn)行腫瘤標(biāo)記。
Figure 5.上轉(zhuǎn)換納米材料在腫瘤靶向成像中的應(yīng)用1
- 上轉(zhuǎn)換激光器
上轉(zhuǎn)換光纖激光器實現(xiàn)了高轉(zhuǎn)換效率、低激光閾值、體積小、結(jié)構(gòu)簡單的特點,現(xiàn)在上轉(zhuǎn)換的藍(lán)綠光激光器已經(jīng)研制出來,但是上轉(zhuǎn)換紫外激光器仍未取得很好的成果。
Figure 6.不同泵浦功率下Er-Yb共摻雜的回音壁式微腔上轉(zhuǎn)換激射2
- 防偽技術(shù)
紅外上轉(zhuǎn)換材料還可以制作成無色油墨材料,做成特征圖案,例如印制成二維碼或者含有隱藏信息的復(fù)雜背景圖案,或者與其他防偽技術(shù)可以互相結(jié)合,可以大大增加防偽的力度。
Figure 7.上轉(zhuǎn)換材料參與到多維防偽技術(shù)中
- 太陽能電池
稀土上轉(zhuǎn)換發(fā)光材料是一種可以吸收近紅外光而發(fā)出不同波段可見光的復(fù)合多功能材料,將上轉(zhuǎn)換發(fā)光材料引入染料敏化太陽能電池光陽極薄膜中可以間接的利用紅外光,拓寬光譜吸收范圍,提高太陽光的有效利用。
Figure 8.背面帶有上轉(zhuǎn)換層的太陽能電池原理圖3
Figure 9.上轉(zhuǎn)換層在PMMA中的上轉(zhuǎn)換發(fā)射譜以及吸收光譜3
- 幾個容易混淆的“上轉(zhuǎn)換”概念
光子上轉(zhuǎn)換發(fā)光與雙光子吸收和二次諧波不能混為一談。雖然他們兩個物理過程都有相似的結(jié)果,即產(chǎn)生光子上轉(zhuǎn)換,表現(xiàn)為發(fā)射的波長比激發(fā)的波長要短,但是其背后的機(jī)理是不一樣的。
- 雙光子吸收Two-photon absorption (TPA):
產(chǎn)生原理:熒光分子吸收一第個光子后,躍遷到虛能級上,該能級僅能存在幾飛秒,便自動返回基態(tài),第二個光子必須在這幾飛秒內(nèi)與虛能級上的分子作用,從基態(tài)躍遷到激發(fā)態(tài)(下圖左),能量較大的激發(fā)態(tài)分子,通過無輻射躍遷和熒光發(fā)射使自己回到低電子激發(fā)態(tài)的低振動能級(下圖右)。
Figure 10.雙光子吸收的過程(左圖)及雙光子熒光過程(右圖)
- 二次諧波Second-harmonic generation (SHG, also called frequency doubling):
兩個同樣頻率的光子與非線性材料相互作用之后,得到一個新的光子,其能量是初始能量的兩倍。
Figure 11.二次諧波的能級圖
Figure 12.二次諧波產(chǎn)生過程示意圖
- 飛秒熒光上轉(zhuǎn)換技術(shù)(Femtosecond Fluorescence Up-conversion technique):超快激光光譜的一個技術(shù)
飛秒熒光上轉(zhuǎn)換技術(shù)是使用空間轉(zhuǎn)換時間的原理,通過光子上轉(zhuǎn)換的技術(shù)將熒光信號和探測信號來產(chǎn)生新的頻率的信號。
其基于熒光光學(xué)門控(Fluorescence Optical Gating)技術(shù)作為測量的基礎(chǔ),具有非常高的時間分辨率。該時間分辨率僅僅依靠激發(fā)光和“閘門”光的脈沖寬度(通常為飛秒量級),而不依賴于探測器的響應(yīng)時間,所以具有高測量精度。通過精確控制并改變“閘門”光脈沖相對于激發(fā)光脈沖的延遲時間,可以非常準(zhǔn)確地將飛秒到納秒范圍內(nèi)的熒光壽命測量出來。
下方為飛秒熒光上轉(zhuǎn)換裝置原理圖:飛秒激光其的激光脈沖經(jīng)過分束片分成兩束,一束激光脈沖用來激發(fā)樣品發(fā)射熒光,并把熒光收集后匯聚到BBO(偏硼酸鋇)晶體上,另一束光作為快門,門控光脈沖經(jīng)過光學(xué)延遲線,也匯聚到BBO上。然后記錄樣品受激發(fā)之后不同時刻熒光強(qiáng)度信息。
Figure 13.常規(guī)熒光上轉(zhuǎn)換裝置原理圖4
Figure 14.熒光上轉(zhuǎn)換技術(shù)的基本原理4
- 參考論文:
1 Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114, 5161-5214, doi:10.1021/cr400425h (2014).
2 Yinlan Ruan, K. B., Hong Ji, Heike Ebendorff-Heidepriem, Jesper Munch, and Tanya M. Monro. in CLEO: 2013. JM2N.5, doi:10.1364/CLEO_SI.2013.JM2N.5 (2013).
3 van Sark, W. G., de Wild, J., Rath, J. K., Meijerink, A. & Schropp, R. E. I. Upconversion in solar cells. Nanoscale Research Letters 8, 81, doi:10.1186/1556-276X-8-81 (2013).
4 Chosrowjan, H., Taniguchi, S. & Tanaka, F. Ultrafast fluorescence upconversion technique and its applications to proteins. FEBS J 282, 3003-3015, doi:10.1111/febs.13180 (2015).
免責(zé)聲明
- 凡本網(wǎng)注明“來源:儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。
2025廣州國際分析測試及實驗室設(shè)備展覽會暨技術(shù)研討會
展會城市:廣州市展會時間:2025-03-05