国产睡熟迷奷系列网站,欧美激情一级精品国产,欧美高清在线观看一区二区,欧美黄片一区二区视频


免費注冊快速求購


分享
舉報 評價

移動式葉綠素熒光成像系統(tǒng)

參考價面議
具體成交價以合同協(xié)議為準

該廠商其他產品

我也要出現(xiàn)在這里

移動式葉綠素熒光成像系統(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對大田、溫室、氣候室和實驗室場景的可以移動的葉綠素熒光測量系統(tǒng)

詳細信息 在線詢價

 

移動式葉綠素熒光成像系統(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對大田、溫室、氣候室和實驗室場景的可以移動的葉綠素熒光測量系統(tǒng)。配備移動式升降平臺車、內置電腦的葉綠素熒光成像單元、移動電源、顯示單元和操作單元。葉綠素熒光成像單元可以升降和旋轉,既可以測量不同高度的植物冠層,也可以傾斜或水平角度測量穗(麥穗、稻穗、谷穗等)、莢果(大豆、油菜等)、果實(番茄、黃瓜、葡萄、柑橘等)、葉片或冠層。

 

該系統(tǒng)成像面積為18x18cm,具備500萬像素高清成像,同時具備“調制”和“非調制”葉綠素熒光成像測量功能,既可以測量光合生理,也可以測量形態(tài)結構,同時配備功能強大的控制和分析軟件,且可以對大量數(shù)據(jù)進行批處理分析。該系統(tǒng),無論室內還是大田,都是進行植物表型、光合生理、植物抗逆、植物病理、育種、功能基因組、突變株篩選、種子生理/病理等研究的利器。
 

 

功能特性

  • 大田、溫室、氣候室、實驗室進行移動式測量
  • 葉綠素熒光成像單元可以升降、旋轉
  • 葉綠素熒光成像和表型分析同步測量
  • 同時具備調制和非調制葉綠素熒光測量功能
  • 出色的高清相機(500萬像素)、高信噪比成像
  • 16位圖像格式,的成像質量
  • 光源、相機、濾光片、電腦一體化設計
  • 無可見鏡頭畸變,無需圖像校正
  • 成像范圍18 x 18cm
  • 多種測量protocol可選,允許用戶編輯設定自己的protocol,包括但不限于Fv/Fm測量、標準誘導曲線測量、暗弛豫測量、OJIP快速誘導動力學測量等等。
  • 可進行功能強大的延時成像測量
  • 自動計算熒光參數(shù)和表型參數(shù)
  • 具備圖像數(shù)據(jù)批處理分析功能
  • 提供多種功能強大的圖像分割功能
  • 對所有圖像數(shù)據(jù)均提供數(shù)據(jù)分級(用戶自定義范圍)并進行圖像化顯示,并允許對分級篩選后的數(shù)據(jù)疊加到可見光圖像上展示
  • 圖像背景、偽彩色標尺均有多種選擇
  • 允許用戶自定義多種ROI(性狀、數(shù)目、分布等)并對ROI的數(shù)據(jù)自動分析
  • 嵌入式電腦進行精確的成像、時間控制、光強控制和數(shù)據(jù)存儲
  • 功能強大的控制和分析軟件
  • 特別適合突變株篩選、育種材料/組合篩選、抗逆研究、病理研究、種子研究、果實研究、功能基因組學等

主要技術參數(shù)

  • 基本組成:移動式升降平臺、葉綠素熒光成像單元、移動電源、顯示單元、操作單元等
  • 葉綠素熒光成像方式:“調制”測量 +“費調制”測量
  • 調制測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1 ,獨立觸發(fā)
  • Kautsky測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1
  • 飽和脈沖:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1,獨立觸發(fā)
  • 時間分辨動力學光化光:紅光LED,660nm,光強800 umol m-2 s-1
  • 遠紅光:LED,735nm,半峰全寬20nm,35W
  • 相機:CMOS傳感器,500萬像素
  • 顏色深度:12bit
  • 標準幀率:37.5 FPS
  • 圖像格式:16bit
  • 相機光譜范圍:400~1000 nm
  • 接口:3個USB3.0,1個以太網口,1個HDMI接口
  • 嵌入式電腦:4核處理器,8G內存,256G固態(tài)硬盤
  • 成像面積:18cm x 18cm
  • 升降高度:0-1200mm(高度可定制)
  • 旋轉角度:-90° ~ 90°
  • 顯示單元:15.6寸觸摸顯示屏
  • 供電:35萬mAh移動電源,額定容量1260Wh,峰值功耗1000W,待機功耗35W
  • 系統(tǒng)尺寸:600mm x 720mm x 2000mm(長x寬x高)

 

 

測量參數(shù)

  • 調制葉綠素熒光參數(shù):Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;
  • 非調制葉綠素熒光參數(shù):Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Area/Fv、PI、Rfd、dRfd、RfdFm和RfdFt等;
  • 表型參數(shù):(植物、種子、果實的)數(shù)目、輪廓面積、長度、寬度、凸包點數(shù)、凸包面積、凸包面積/輪廓面積、最小外接圓(質心、半徑、面積)、最小外接矩形(長、寬、面積、角度、alpha)和骨架等。

 

 

 

 

 

利用PhenoVation葉綠素熒光成像技術發(fā)表的部分文獻

  1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
  2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
  4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
  5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
  6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
  7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
  8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
  9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
  10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
  13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
  15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
  23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
  26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
  32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
  35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
  40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
  41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221


同類產品推薦


提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

台北县| 大新县| 辉县市| 宁南县| 施秉县| 汾西县| 威宁| 买车| 仁布县| 长泰县| 桂林市| 江北区| 宁国市| 乐平市| 元朗区| 绍兴县| 红桥区| 巩留县| 和龙市| 江安县| 普定县| 桃江县| 金乡县| 灵武市| 中江县| 礼泉县| 合作市| 嘉荫县| 化州市| 庐江县| 淅川县| 祁东县| 麟游县| 南阳市| 昭苏县| 东城区| 温宿县| 峡江县| 随州市| 瑞昌市| 铁力市|