好氧顆粒污泥工藝強化脫氮研究進展
隨著社會與工業(yè)發(fā)展對氮素需求量的急劇增加,大量含氮化合物隨工業(yè)廢水、養(yǎng)殖廢水、生活污水、農(nóng)業(yè)徑流等進入河流、湖庫、海洋,造成環(huán)境水體水質(zhì)惡化和水體富營養(yǎng)化,嚴重影響水生生態(tài)環(huán)境和人畜飲水安全[1-2]. 目前,污水處理廠普遍采用缺氧-好氧法(Anoxic/Oxic,A/O)、厭氧-缺氧-好氧法(Anaerobic-Anoxic-Oxic,A2/O)、氧化溝及序批式活性污泥法(Sequencing batch reactor activated sludge process,SBR)等脫氮工藝,上述工藝在進水高氨氮條件下極易發(fā)生硝化抑制[3-4]、亞硝酸鹽積累[5-6]等問題,加上硝化反硝化微生物生長極其緩慢、出水總氮標準日益提高,強化生物脫氮新工藝研發(fā)迫在眉睫。
pH做為基本的污水指標,勢必成為供求的熱點,這對廣大的E-1312 pH電極制造商,比如美國BroadleyJames來說是個重大利好。美國BroadleyJames做為老牌的E-1312 pH電極制造商,必將為中國的環(huán)保事業(yè)帶來可觀的經(jīng)濟效益。我們美國BroadleyJames生產(chǎn)的E-1312 pH電極經(jīng)久耐用,質(zhì)量可靠,測試準確,廣泛應(yīng)用于各級環(huán)保污水監(jiān)測以及污水處理過程。
目前,生物脫氮 新技 術(shù)主要有短程硝化反硝化 工藝(Single reactor for high activity ammonia removal over nitrite,SHARON)、厭氧氨氧化工藝(Anaerobic ammonium oxidation,ANA MMOX)、限氧自養(yǎng)型硝化反硝化工藝(Oxygen limited autotrophic nitrification denitrification, O L A N D)以及同步硝化反硝化 工藝(S i m u l t a n e o u snitrification denitrification,SND),其雖較傳統(tǒng)生物脫氮工藝具有經(jīng)濟性能好、脫氮效率高等明顯優(yōu)勢,但仍存在一定的應(yīng)用瓶頸.
SHARON中長久穩(wěn)定地維持NO2-積累的途徑還有待探索;ANAMMOX啟動較慢,厭氧氨氧化菌(Anammox,AMX)對水質(zhì)條件敏感;OLAND面臨的嚴峻挑戰(zhàn)是自養(yǎng)型亞硝酸細菌的活性較低;SND由于生物絮體微缺氧區(qū)的形成往往不穩(wěn)定,難保證出水水質(zhì)穩(wěn)定達標.
近 20年來,好氧顆粒污泥因其致密的結(jié)構(gòu)、良好的沉降性能、耐沖擊負荷能力和多功能菌群成為廢水生物處理的新興技術(shù)[7],研究者對好氧顆粒污泥形成機制、影響因素、菌群結(jié)構(gòu)等開展了大量研究[8-10]. 此外,好氧顆粒污泥與上述生物脫氮新技術(shù)的結(jié)合在廢水生物處理中也呈現(xiàn)出明顯的技術(shù)優(yōu)勢和良好的應(yīng)用前景.
針對目前城鎮(zhèn)污水等碳氮比低、出水總氮達標壓力大等突出問題,本文綜述基于好氧顆粒污泥的全自養(yǎng)、同步硝化反硝化、短程硝化反硝化、短程硝化-厭氧氨氧化、異養(yǎng)硝化-好氧反硝化等強化脫氮工藝,介紹其脫氮機制及技術(shù)優(yōu)勢,同時分析進水基質(zhì)組成、運行條件(溶解氧濃度、溫度和pH)、運行模式等對好氧顆粒污泥工藝強化脫氮與穩(wěn)定運行的影響,最后對好氧顆粒污泥強化脫氮工藝研發(fā)與技術(shù)應(yīng)用進行展望,為好氧顆粒污泥脫氮工藝性能優(yōu)化及微生物菌群功能與機理研究提供參考.
1 好氧顆粒污泥強化脫氮工藝
1.1 全自養(yǎng)硝化顆粒污泥工藝
硝化細菌生長速率緩慢、生物產(chǎn)量低且對環(huán)境條件極為敏感,很難長期大量持留在反應(yīng)體系內(nèi),這使得硝化反應(yīng)成為生物脫氮的限制性步驟. 自養(yǎng)硝化顆粒污泥的形成使硝化微生物以聚集體的形式持留在反應(yīng)器內(nèi),提高體系內(nèi)硝化污泥濃度,進而促進硝化反應(yīng)進程,在處理高氨無機廢水方面具有良好的應(yīng)用前景.
然而,由于自養(yǎng)型的硝化細菌生長緩慢且胞外多糖產(chǎn)量低,細胞間的黏附作用差,較難形成生物聚集體,國內(nèi)外學(xué)者在強化自養(yǎng)硝化污泥顆?;矫孢M行了大量研究. 縮短硝化顆粒污泥培養(yǎng)時間的方式主要分為兩種:一是調(diào)控顆粒培養(yǎng)的運行條件,二是增加促進細胞間粘附的外部因素.
Tay等在SBR中研究了水力選擇壓(SBR運行周期)對硝化顆粒污泥形成的影響,結(jié)果表明采用較長運行周期時間(12 h)的反應(yīng)器由于水力選擇壓較弱無法形成硝化顆粒污泥,而較短的運行周期(3 h)導(dǎo)致硝化污泥被大量洗出,同樣使得硝化污泥顆粒化失敗,周期為6 h和12 h的運行條件下,兩周后成功培養(yǎng)出粒徑0.25 mm、比重1.014的硝化顆粒污泥[11].
合適的水力選擇壓能夠刺激微生物活性、促進增強細胞間粘附性的胞外多糖產(chǎn)生、增加細胞表面疏水性,進而促進硝化顆粒污泥的形成. Tsuneda等亦通過逐步縮短水力停留時間進而強化水力選擇壓的方式在連續(xù)流好氧流化床反應(yīng)器內(nèi)成功培養(yǎng)出粒徑350 μm的硝化好氧顆粒污泥[12].
Chen等采取短的初始沉降時間和快速增加氨氮負荷的方法顯著強化了體系生物選擇壓,實現(xiàn)了硝化顆粒污泥的快速培養(yǎng),55 d內(nèi)進水氨氮濃度從 200 mg/L增加到1 000 mg/L,污泥容積指數(shù)(Sludge volume index,SVI)從92 mL/g下降到15 mL/g,顆粒平均粒徑從106 μm增加到369 μm [3]. 因此,通過調(diào)控反應(yīng)器運行條件來強化體系內(nèi)水力選擇壓和生物選擇壓的方式能夠明顯加快硝化污泥顆?;M程.
為減少自養(yǎng)硝化顆粒污泥反應(yīng)器啟動時間,外部促進因素亦是一種強化方式. Wang等應(yīng)用穩(wěn)恒磁場來促進含鐵聚合物的積累進而在增強污泥沉降性能同時刺激胞外多聚物的產(chǎn)生,以此來促進污泥絮凝團聚形成顆粒,反應(yīng)器運行 25 d即獲得致密緊實的硝化顆粒 [13]. Li等向自養(yǎng)硝化污泥體系中投加群體感應(yīng)信號分子N-酰基高氨酸內(nèi)酯,以加快生物量增長速率,促進微生物活性和胞外蛋白的產(chǎn)生量,促進了硝化細菌間的吸附和聚集,進而實現(xiàn)硝化污泥的快速顆?;?span>[14].
1.2 同步硝化反硝化顆粒污泥工藝
同步硝化反硝化顆粒污泥工藝是基于顆粒污泥致密結(jié)構(gòu)和較大粒徑所形成的梯級溶氧環(huán)境特征,外部好氧-內(nèi)部缺氧的分層結(jié)構(gòu)使得功能微生物分區(qū)定殖[15],研究者們應(yīng)用熒光原位雜交技術(shù)(Fluorescence in situ hybridization,FISH)和微電極等方法對好氧顆粒污泥內(nèi)部菌群分布進行了研究,發(fā)現(xiàn)氨氧化菌(Ammonia oxidizing bacteria,AOB)、亞硝酸鹽氧化菌(Nitrite oxidizing bacteria,NOB)可與異養(yǎng)菌共存于好氧顆粒污泥中,其中顆粒外層70-100 μm處主要分布氨氧化菌Nitrosomonas sp.,其內(nèi)層為亞硝酸鹽氧化菌Nitrobacter sp.和Nitrospira sp.,硝化反應(yīng)主要發(fā)生在顆粒表層300 μm內(nèi),而距表面800-900 μm處則以兼性菌Rhodocyclaceae bacterium 和Paracccus marcusii以及厭氧菌Bacteroides sp.為主[16],顆粒內(nèi)部多樣化菌群可實現(xiàn)功能耦合,完成同步硝化反硝化脫氮。
立即詢價
您提交后,專屬客服將第一時間為您服務(wù)